Appendix A14.2 Ground Investigation Report

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

Ground Investigations Ireland Bus Connect Detailed Stage 1 Lot 1 Route 12 National Transport Authority Ground Investigation Report April 2021

Directors: Fergal McNamara (MD), James Lombard, Conor Finnerty, Aisling McDonnell & Barry Sexton Ground Investigations Ireland Limited | Registered in Ireland Company Regsitration No.: 405726

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

DOCUMENT CONTROL SHEET

Project Title	Bus Connect Detailed Stage 1 Lot 1
Engineer	Arup
Client	ΝΤΑ
Project No	9754-07-20 R12
Document Title	Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
А	Draft	M Sutton	A McDonnell	A McDonnell	Dublin	16 March 2021
В	Final	M Sutton	A McDonnell	A McDonnell	Dublin	01 April 2021

Ground Investigations Ireland Ltd. present the results of the fieldworks and laboratory testing in accordance with the specification and related documents provided by or on behalf of the client The possibility of variation in the ground and/or groundwater conditions between or below exploratory locations or due to the investigation techniques employed must be taken into account when this report and the appendices inform designs or decisions where such variation may be considered relevant. Ground and/or groundwater conditions may vary due to seasonal, man-made or other activities not apparent during the fieldworks and no responsibility can be taken for such variation. The data presented and the recommendations included in this report and associated appendices are intended for the use of the client and the client's geotechnical representative only and any duty of care to others is excluded unless approved in writing.

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

 Tel:
 01 601 5175 / 5176

 Email:
 info@gii.ie

 Web:
 www.gii.ie

GROUND INVESTIGATIONS IRELAND

Geotechnical & Environmental

CONTENTS

1.0	Preamble1
2.0	Overview1
2.1.	Background1
2.2.	Purpose and Scope1
3.0	Subsurface Exploration1
3.1.	General1
3.2.	Cable Percussion Boreholes1
3.3.	Rotary Boreholes2
3.4.	Surveying
3.5.	Groundwater Monitoring Installations3
3.6.	Laboratory Testing
4.0	Ground Conditions
4.1.	General
4.2.	Groundwater4
4.3.	Laboratory Testing
4.3.1.	Geotechnical Laboratory Testing5
4.3.1.	Environmental Laboratory Testing5

APPENDICES

Appendix 1	Site Location Plan
Appendix 2	Borehole Records
Appendix 3	Laboratory Testing
Appendix 4	Groundwater Monitoring

1.0 Preamble

On the instructions of Arup, a site investigation was carried out by Ground Investigations Ireland Ltd., between October and November 2020 at the site of the proposed bus corridor along Route 12: Rathfarnham to city centre.

2.0 Overview

2.1. Background

It is proposed to construct a new Bus Connects Core Bus Corridor on several commuter routes into Dublin City Centre. Route 12 is proposed to run between Rathfarnham and the city centre.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope changed throughout the project with extra locations added and removed based on design changes at the request of the client. R12-CP01 was not undertaken due to access issues. The final scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 3 No. Cable Percussion boreholes to a maximum depth of 4.50m BGL with rotary follow on to a maximum depth of 15.50m BGL.
- Installation of 2 No. Groundwater monitoring wells
- Geotechnical & Environmental Laboratory testing
- Factual Report

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling. The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Cable Percussion Boreholes

The Cable Percussion Boreholes were drilled using a Dando 2000 drilling rig with regular in-situ testing and sampling undertaken to facilitate the production of geotechnical logs and laboratory testing.

The standard method of boring in soil for site investigation is known as the Cable Percussion method. It consists of using a Shell in non cohesive soils and a clay cutter in cohesive soils, both operated on a wire cable. Very hard soils, boulders and other hard obstructions are broken up by chiselling and the fragments removed with the Shell. Where ground conditions made it necessary, the borehole was lined with 200mm diameter steel casing. While the use of the Cable Percussion method of boring gives the maximum data on soil conditions, some mixing of laminated soil is inevitable. For this reason, thin lenses of granular material may not be noticed. Disturbed samples were taken from the boring tools at suitable depths, so that there is a representative sample at the top of each change in stratum and thereafter at regular intervals down the borehole until the next stratum was encountered. The disturbed samples were then sealed and sent to the laboratory where they were visually examined to confirm the description of the relevant strata. Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists of a thick wall sampler tube, 50mm external diameter, being driven into the soil by a monkey weighing 63.5kg and with a free drop of 760mm. For gravels and glacial till the driving shoe was replaced by a solid 60° cone. The Standard Penetration Test number referred to as the 'N' value is the number of blows required to drive the tube 300mm, after an initial penetration of 150mm. The number gives a guide to the consistency of the soil and can also be used to estimate the relative strength/density at the depth of the test and also to estimate the bearing capacity and compressibility of the soil. The cable percussion borehole logs are provided in Appendix 2 of this Report.

3.3. Rotary Boreholes

The rotary coring was carried out by a track mounted T44 Beretta rig at the locations shown on the location plan in Appendix 1. The rotary boreholes were completed from the ground surface or alternatively, where noted on the individual borehole log, from the base of the cable percussion borehole where a temporary liner was installed to facilitate follow-on rotary coring.

The T44 Beretta is equipped with rubber tracks which allow for short travel on pavement surfaces avoiding any damage to the surface. The T44 Beretta utilises a triple tube core barrel system operated using a wireline drilling process. The outer barrel is rotated by the drill rods and at its lower end, carries the coring bit. The inner barrel is mounted on a swivel so that it does not rotate during the process. The third barrel or liner is placed within the second one to retain the core intact and to preserve as much as possible the fabric of the drilling stratum. The core is cut by the coring bit and passes to the inner liner. The core is brought up to the surface within the inner barrel on a small diameter wire rope or line attached to the "overshoot" recovery tool which is then placed into a core box in order of recovery. A drilling fluid, typically air mist or water flush is passed from the surface through hollow drill rods to the drill bit, and is used to cool the drill bit. Temporary casing is used in some situations to support unstable ground or to seal off fissures or voids. It should be noted that the rotary coring can only achieve limited recovery in overburden, particularly granular or weakly cemented strata due to the flushing medium washing away the cohesive fraction during coring. The recovery achieved, where required is noted on the borehole logs and core photographs are provided to allow assessment of the core recovered. The rotary borehole logs are provided in Appendix 2 of this Report.

3.4. Surveying

The exploratory hole locations have been recorded using a KQ GEO Technologies KQ-M8 System which records the coordinates and elevation of the locations to ITM or Irish National Grid as required by the project specification. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

3.5. Groundwater Monitoring Installations

Groundwater Monitoring Installations were installed upon the completion of the boreholes to enable sampling and the determination of the equilibrium groundwater level. The typical groundwater monitoring installation consists of a 50mm uPVC/HDPE slotted pipe with a pea gravel response zone and bentonite seal installed to the Engineers specification. Where required the standpipe is sealed with a gas tap and finished with a durable steel cover fixed in place with a concrete surround. The installation details are provided on the exploratory hole logs in the appendices of this Report.

3.6. Laboratory Testing

Samples were selected from the exploratory holes for a range of geotechnical and environmental testing to assist in the classification of soils and to provide information for the proposed design.

Environmental & Chemical testing as required by the specification, including the Arup specified suite based on Engineers Ireland Suite E was carried out by Element Materials Technology Laboratory in the UK on 7 samples.

Geotechnical testing consisting of 4 moisture content, 4 Atterberg limits, 4 Particle Size Distribution (PSD) and 4 hydrometer tests were carried out in NMTL's Geotechnical Laboratory in Carlow.

The results of the laboratory testing are included in Appendix 3 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report. The sequence of strata encountered across the site generally comprised;

- Topsoil
- Made Ground
- Cohesive Deposits
- Granular Deposits

Bedrock

TOPSOIL: Topsoil was encountered in all the exploratory holes and was present to a maximum depth of 0.8m BGL.

MADE GROUND: Made Ground deposits were encountered beneath the Topsoil/Surfacing and were present to a depth of between 1.5m and 1.6m BGL. These deposits were described generally as *brown* sandy slightly gravelly Clay and contained occasional fragments of red brick and plastic.

COHESIVE DEPOSITS: Cohesive deposits were generally encountered beneath the Made Ground and were described typically as *brown sandy gravelly CLAY with occasional cobbles*. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. The strength of the cohesive deposits was typically stiff in the exploratory holes.

GRANULAR DEPOSITS: The granular deposits were generally encountered at the base of the cohesive deposits and were typically described as *Grey brown sandy sub angular to sub rounded to fine to coarse GRAVEL with occasional cobbles.* The secondary sand/gravel and silt/clay constituents varied across the site and with depth while occasional or frequent cobble content also present where noted on the exploratory hole logs.

Based on the SPT N values the deposits are typically medium dense or dense. 2 groundwater strikes were noted in borehole R12-CP02 within the granular deposits.

BEDROCK: The rotary core boreholes recovered weak to strong greyish brown or dark grey fine to medium grained laminated argillaceous / fossiliferous LIMESTONE. This is typical of the Calp Formation, which is noted on the geological mapping to the east of the proposed site. Rare visible calcite veins were noted during logging which are typically present within the Calp Limestone.

The depth to rock varies from 5.5m BGL in R12-CP03 to 5.6m BGL in R12-CP02. The total core recovery is good, typically 100% with some of the uppermost runs dropping between 70 and 90%. The SCR and RQD both are relatively poor in the upper weathered zone, often recovered as non-intact, however both indices show an increase with depth in each of the boreholes.

4.2. Groundwater

Groundwater strikes are noted on the exploratory hole logs where they occurred and where possible drilling was suspended for twenty minutes to allow the subsequent rise in groundwater to be recorded. We would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with time of year, rainfall, nearby construction and other factors. For this reason, standpipes were installed in R12-CP02 and R12-CP03 to allow the equilibrium groundwater level to be determined. The groundwater monitoring is included in Appendix 4 of this Report.

4.3. Laboratory Testing

4.3.1. Geotechnical Laboratory Testing

The geotechnical testing carried out on soil samples recovered generally confirm the descriptions on the logs with the primary constituent of the cohesive deposits found to be a CLAY of low to intermediate plasticity. The Particle Size Distribution test on the cohesive on a sample from CP02 at 2.0m confirm the cohesive deposits are well-graded with percentages of sands and gravels ranging between 23% and 49% generally with fines contents of 28%

The Particle Size Distribution tests confirm that generally the granular deposits are gap graded with percentages of sands between 1.4 and 26.8%, silt/clay typically between 1.3% and 15.6% with a gravel content of typically 45% to 84%. Cobble content also was encountered on some holes and recorded between 0 and 51.8%

4.3.1. Environmental Laboratory Testing

Seven samples were analysed for a Suite of testing specified by ARUP based on suite E according to engineers Ireland.

The possibility for contamination, not revealed by the testing undertaken should be borne in mind particularly where Made Ground deposits are present, or the previous site use or location indicate a risk of environmental variation.

The results from the completed laboratory testing is included in Appendix 3 of this report.

APPENDIX 1 - Site Location Plan

APPENDIX 2 – Borehole Records

achine : Da Be ethod : Ca	eretta T44		200	Diamete Omm cas mm case			Level (mOD) 35.44	Client National Transport Authority		Job Numbe 9754-07
			Location 714		729676.1 N		/10/2020- /11/2020	Project Contractor Ground Investigations Ireland		Sheet 1/2
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Vater sul
							(0.80)	Brown slightly sandy slightly gravelly TOPSOIL.		
50	EN					34.64	0.80	MADE GROUND: Brownish grey sandy gravelly		
00-1.45 00 00	SPT(C) B T	N=23			3,3/4,6,6,7		(0.70)	Clay with occasional fragments of brick.		
50	EN					33.94	1.50	Medium dense brownish grey sandy clayey sub-angular to sub-rounded fine to coarse GRAVEL.		
00-2.45	SPT(C) B T	N=31			8,10/9,9,8,5		(0.90)			
00 50	I EN				Water strike(1) at	33.04		Dense grey sandy sub-angular to sub-rounded fine to coarse GRAVEL.		▼ 1
0 0-3.43	B SPT(C)	50/280			2.60m, no rise after 20 mins, sealed at 2.80m. 15,17/15,13,13,9		(0.90)			
00 60	B ÉN				9,19/16,23,11 SPT(C) 50/195	32.14	3.30 (0.70)	Very stiff brown slightly sandy gravelly CLAY with occasional sub-angular to sub-rounded cobbles. Gravel is sub angular to sub rounded fine to coarse.		▼ 2
00-4.35 10 10	TCR	SCR	RQD	FI	Water strike(2) at 4.00m, rose to 3.60m in 20 mins. T	31.44	4.00	Dense grey/brownish grey angular to subrounded fine to coarse GRAVEL with frequent angular to		∑ 2
0	55				†			subrounded cobbles		
0-5.12 0					15,10/50 SPT(C) 25*/115 50/5		(1.60)			
						29.84	5.60			
0	97	55	48			20.01		Strong thinly laminated grey fine grained fossiliferous LIMESTONE. Partially weathered wi occasional calcite veining		
0				4						
0										
20	100	61	68	NI				6.90m-7.20m BGL - Mostly Non Intact		
5				3			(3.90)	7.20m-7.85m BGL - F1: Closely to medium spaced, 60° to 80°, undulating smooth to rough		
0 :5				NI				7.85m-8.25m BGL - Mostly Non Intact		
5	100	75	67	6				8.25m-8.75m BGL - Two fracture sets. F1: Very closely to closely spaced, 0° to 10°, undulating smooth to rough with occasional clay staining. F2: Very closely to closely spaced, 80° to 90°, undulating rough		
50						25.94	9.50	Poor Recovery: Brown slightly sandy slightly gravelly CILAY: Driller notes Clay Band (Possible clay infilled cavity)		
emarks	sion refus						<u> </u>		Scale	Logge

Produced by the GEOtechnical DAtabase SYstem (GEODASY) © all rights reserved

		Grou	nd In	vesti wv	gations Ire	land	Ltd		Site Bus Connect Detailed Stage 1 Lot 1		N	orehole umber 2-CP02
Machine : D B Flush : W Core Dia: 6	Vater	8	20	Diamete Omm cas	r	Ground	Level 35.44	(mOD)	Client National Transport Authority		N	ob umber 54-07-20
Method : C		ission	Locatio		729676.1 N	Dates 27 13	7/10/20 3/11/20	20- 20	Project Contractor Ground Investigations Ireland		SI	heet 2/2
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	De (I (Thic	epth m) kness)	Description	Legend	Water	Instr
	73	57	57			25.34		10.10	Strong thinly laminated grey fine grained fossiliferous LIMESTONE. Partially weathered with occasional calcite veining			
11.00	93	93	93	3					8.75m-15.50mBGL - Two fracture sets. F1: Closely to medium spaced, 0° to 10°, undulating smooth with occasional clay staining. F2: Closely to medium spaced, 80° to 90°, undulating smooth			
12.50	100	93	83					(5.40)	to 90°, undulating smooth			
14.00	100	100	98									
15.50						19.94		15.50	Complete at 15.50m			
Remarks	1	1	1		1	1				Scale (approx)		ogged y
									-	1:50 Figure M		lcl & PC
										9754-07-2		12-CP03

Machine : D B Method : 68	eretta T44		Casing 200 681	0mm cas	r ed to 4.30m d to 14.00m		Level (mOD) 36.96	Client National Transport Authority		Job Number 9754-07-2
			Locatio		729634.3 N		/10/2020- /11/2020	Project Contractor Ground Investigations Ireland		Sheet 1/2
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Ate Instr
							(0.40)	Brown slightly sandy slightly gravelly TOPSOIL.		
.50	EN					36.56	0.40	MADE GROUND: Brown slightly sandy gravelly Clay with occasional fragments of plastic.		
.00-1.45 .00 .00	SPT(C) B T	N=17			4,5/3,3,6,5		(1.20)			
.50	EN 11					35.36	1.60	Stiff brown slightly sandy gravelly CLAY with occasional sub-angular cobbles. Gravel is sub angular to sub rounded fine to coarse.	0 <u>1 0 0</u>	
.00-2.34 .00 .00 .50	SPT(C) B T EN	50/190			3,3/3,5,42		(1.30)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
						34.06 33.96		☐ Grey sub-angular COBBLES.	10,0,0 10,0,0	
.50-3.66 .50	TCR	SCR	RQD	FI	12,12/50 SPT(C) 50/10			Dense grey/brownish grey angular to subrounded fine to coarse GRAVEL with frequent angular to subrounded cobbles		
	63						(2.50)			
.00-5.15 .00					25/50 SPT(C) 25*/50 50/100					
.50						31.46	5.50	Weak to medium strong thinly laminated greyish		
	87	11	0					brown fine to medium grained DOLOMITISED LIMESTONE with occasional vugs. Distinctly weathered with occasional clay infilling		
.50										00000000000000000000000000000000000000
	73	0	0	MNI			(2.50)	5.50m-8.00m BGL - Mostly Non Intact		666916
	13	0	0							
.00						28.96	<u> </u>	Strong thinly laminated greyish brown fine to medium grained DOLOMITISED LIMESTONE. Partially weathered with occasional calcite veining		
	83	51	47	1				8.00m-9.10m BGL - F1: Closely to medium spaced, 0° to 10°, undulating smooth with clay staining		
10				MNI				9.10m-9.50m BGL - Mostly Non Intact		
50	<u> </u>			3				9.50m-9.90m BGL - F1: Medium spaced, 0° to		
90 Remarks							<u> </u>	10°, undulating smooth with clay staining	<u> </u>	
able persu					ssion drilling				Scale (approx)	Logged By

Produced by the GEOtechnical DAtabase SYstem (GEODASY) © all rights reserved

Flush : W	eretta T44 ater	&	20		r ed to 4.30m d to 14.00m		Level (mOD) 36.96	Client National Transport Authority	N	ob umber 54-07-2	
Core Dia: 68		cussion	Locatio		729634.3 N		/10/2020- /11/2020	Project Contractor Ground Investigations Ireland		SI	heet 2/2
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Inst
0.30	100	64	58	MNI 11				9.90m-10.30m BGL - Mostly Non Intact 10.30m-10.85m BGL - Very closely to closely			
).85 I.00	100	93	85				(6.00)	spaced, 10° to 20°, undulating smooth with clay staining			
2.50	100	75	75	3				10.85m-14.00m BGL - Two fracture sets. F1: Closely to medium spaced, 0° to 10°, undulating smooth to rough with occasional clay infilling/staining. F2: Closely to medium spaced, 80° to 90°, undulating smooth to rough			
4.00						22.96		Complete at 14.00m			
Remarks							<u> </u>		Scale (approx)		ogge y

	ando 2000 Cable Percussion	Casing 1 200	Diameter	/W.gii.ie r ed to 3.30m	Ground	Level (mOD)	Client National Transport Authority	Job Numb 9754-07
		Locatio	ı			/10/2020- /10/2020	Project Contractor Ground Investigations Ireland	Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.00-3.05	SPT(C) 50*/50 B			50/			Brown slightly sandy slightly gravelly TOPSOIL. MADE GROUND: Brown slightly sandy gravelly Clay with occasional fragments of plastic. Stiff brown slightly sandy gravelly CLAY with occasional sub-angular cobbles. Gravel is sub angular to sub rounded finw to coarse. Grey sub-angular COBBLES. Refusal at 3.30m	
o aroundw	mplete at 3.30m BGI ater encountered. om 3.00m to 3.10m f			- form 0 200- to 0 200		<u> </u>	Scale (approx) Logge By

Bus Connects Route 12 – Rotary Core Photographs

Bus Connects Route 12 – Rotary Core Photographs

APPENDIX 3 – Laboratory Testing

National Materials Testing Laboratory Ltd.

				Particle			Index Pro	perties	Bulk	Cell	Undrained Tria	xial Tests	Lab	
BH/TP	Depth	sample	Moisture	Density	<425um	LL	PL	PI	Density	Presssure	Compressive	Strain at	Vane	Remarks
No	m	No.	%	Mg/m3	%	%	%	%	Mg/m3	kPa	Stress kPa	Failure %	kPa	
R12-CP02	2.0	В	9.0		28.9	37	26	11						
R12-CP02	3.0	В	2.2		1.6		Non Plasti	C						
R12-CP03	2.0	В	13.9		40.5	32	19	13						
R12-CP03	3.0	В	8.1		1.9		Non Plasti	C						
NMTL	4	Notes :									Job ref No.	NMTL 3326		9754-07-20
			1. All BS te	ests carried	d out using p	oreferred (definitive) r	nethod ui	nless otherw	vise stated.	Location	Bus Conn	ect Routes	

SUMMARY OF TEST RESULTS

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

John Duggan
16th November, 2020
9754-07-20
Test Report 20/15139 Batch 1
BusConnects Route 12
2nd November, 2020
Final report
1

Seven samples were received for analysis on 2nd November, 2020 of which seven were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

10 1

Phil Sommerton BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Ground Investigations Ireland 9754-07-20 BusConnects Route 12 John Duggan 20/15139

Report : Solid

EMT Job No:	20/15139							 	 -		
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21				
Sample ID	R12-CP02	R12-CP02	R12-CP02	R12-CP02	R12-CP03	R12-CP03	R12-CP03				
Depth	0.50	1.50	2.50	3.50	0.50	1.50	2.50		Please se	e attached n	otes for all
COC No / misc										ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT		1		
Sample Date	27/10/2020	27/10/2020	27/10/2020	27/10/2020	28/10/2020	28/10/2020	28/10/2020		1		
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil		1		
									ļ		
Batch Number	1	1	1	1	1	1	1		LOD/LOR	Units	Method No.
Date of Receipt		02/11/2020	02/11/2020	02/11/2020		02/11/2020	02/11/2020				
Antimony	1	1	1	1	1	2	1		<1	mg/kg	TM30/PM15
Arsenic [#]	15.0	11.4	10.1	41.9	11.3	11.6	9.2		<0.5	mg/kg	TM30/PM15
Barium [#]	68	40	54	79	34	44	168		<1	mg/kg	TM30/PM15
Cadmium [#]	1.0	0.7	0.6	1.2	1.3	1.4	1.4		<0.1	mg/kg	TM30/PM15 TM30/PM15
Chromium [#]	43.5 28	76.0 19	52.5 18	45.8 22	44.0 23	44.3 30	45.7 24		<0.5 <1	mg/kg mg/kg	TM30/PM15 TM30/PM15
Copper [#] Lead [#]	28 50	19	18	22	23	29	24		<1	mg/kg	TM30/PM15 TM30/PM15
Lead " Mercury #	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM30/PM15 TM30/PM15
Molybdenum [#]	3.1	4.4	2.7	3.9	3.3	3.8	4.2		<0.1	mg/kg	TM30/PM15
Nickel #	22.8	23.8	30.0	30.7	31.2	40.9	36.0		<0.7	mg/kg	TM30/PM15
Selenium [#]	<1	<1	<1	<1	<1	1	1		<1	mg/kg	TM30/PM15
Zinc [#]	92	68	61	85	93	108	81		<5	mg/kg	TM30/PM15
PAH MS											
Naphthalene [#]	0.21	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Acenaphthylene	0.07	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		<0.03	mg/kg	TM4/PM8
Acenaphthene [#]	0.69	0.09	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	mg/kg	TM4/PM8
Fluorene#	0.38	0.04	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Phenanthrene#	4.89	0.61	<0.03	<0.03	0.04	0.07	0.13		<0.03	mg/kg	TM4/PM8
Anthracene#	0.73	0.11	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Fluoranthene#	9.55	1.69	<0.03	<0.03	0.06	0.09	0.13		<0.03	mg/kg	TM4/PM8
Pyrene [#]	9.15	1.71	<0.03	<0.03	0.06	0.09	0.12		<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene [#]	4.67	0.90	<0.06	<0.06	<0.06	0.10	0.08		<0.06	mg/kg	TM4/PM8
Chrysene #	6.01	1.21	<0.02	<0.02	0.03	0.06	0.07		<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene#	10.19	2.20	<0.07	<0.07	<0.07	0.11	0.11		<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene [#]	5.49	1.20	<0.04	<0.04	0.04 <0.04	0.07	0.07		<0.04	mg/kg	TM4/PM8 TM4/PM8
Indeno(123cd)pyrene	3.57 0.89	0.85	<0.04 <0.04	<0.04 <0.04	<0.04	<0.04 <0.04	<0.04 <0.04		<0.04 <0.04	mg/kg mg/kg	TM4/PM8
Dibenzo(ah)anthracene [#]	4.21	0.19	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene [#] Coronene	0.63	0.30	<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
PAH 17 Total	61.33	11.94	<0.64	<0.64	<0.64	<0.64	0.71		<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	7.34	1.58	<0.05	<0.05	<0.05	0.08	0.08		<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	2.85	0.62	<0.02	<0.02	<0.02	0.03	0.03		<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	88	90	74	82	87	86	85		<0	%	TM4/PM8
Mineral Oil (C10-C40) (EH_CU_1D_Total)	<30	<30	<30	<30	<30	<30	<30		<30	mg/kg	TM5/PM8/PM16

Ground Investigations Ireland 9754-07-20 BusConnects Route 12 John Duggan 20/15139

Report : Solid

EMT Job No:	20/15139							 	 _		
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21				
Sample ID	R12-CP02	R12-CP02	R12-CP02	R12-CP02	R12-CP03	R12-CP03	R12-CP03				
Depth	0.50	1.50	2.50	3.50	0.50	1.50	2.50		Plaasa sa	e attached n	otoc for all
COC No / misc										ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date		27/10/2020	27/10/2020	27/10/2020		28/10/2020	28/10/2020				
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	1	1	1	1	1	1	1		LOD/LOR	Units	Method No.
Date of Receipt	02/11/2020	02/11/2020	02/11/2020	02/11/2020	02/11/2020	02/11/2020	02/11/2020				140.
TPH CWG											
Aliphatics	sv	0.4			0.4	0.4					
>C5-C6 (HS_1D_AL)*	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)*	<0.1 ^{SV}	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1		<0.1	mg/kg	TM36/PM12 TM36/PM12
>C8-C10 (HS_1D_AL) >C10-C12 (EH 1D AL) [#]	<0.1 ^{SV}	<0.1 <0.2	0.1 <0.2	<0.1	<0.1	<0.1	<0.1		<0.1 <0.2	mg/kg mg/kg	TM5/PM8/PM16
>C10-C12 (EH_1D_AL) >C12-C16 (EH_1D_AL) [#]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_1D_AL)*	<7	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_1D_AL)*	23	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_1D_AL)	<7	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH+HS_1D_AL)	<26	<26	<26	<26	<26	<26	<26		<26	mg/kg	TMS/TM36/PMM/PM12/PM16
>C6-C10 (HS_1D_AL)	<0.1 ^{SV}	<0.1	0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>C10-C25 (EH_1D_AL)	<10	<10	<10	<10	<10	<10	<10		<10	mg/kg	TM5/PM8/PM16
>C25-C35 (EH_1D_AL)	19	<10	<10	<10	<10	<10	<10		<10	mg/kg	TM5/PM8/PM16
Aromatics											
>C5-EC7 (HS_1D_AR) [#]	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR) *	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)*	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_1D_AR)*	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_1D_AR)#	6	<4	<4	<4	<4	<4	<4		<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_1D_AR)#	57 287	<7	<7	<7 <7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>EC21-EC35 (EH_1D_AR) [#] >EC35-EC40 (EH_1D_AR)	45	61 12	<7 <7	<7	<7 <7	<7 <7	<7 <7		<7 <7	mg/kg mg/kg	TM5/PM8/PM16
Total aromatics C5-40 (EH+HS_1D_AR)	395	73	<26	<26	<26	<26	<26		<26	mg/kg	TMS/TMS/PM/PM/2PM/6
Total alphatics and aromatics(C5-40) (EH+HS_CU_1D_Total)	395	73	<52	<52	<52	<52	<52		<52	mg/kg	TMS/TM36/PMM/PM12/PM16
>EC6-EC10 (HS_1D_AR) [#]	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_1D_AR)	140	16	<10	<10	<10	<10	<10		<10	mg/kg	TM5/PM8/PM16
>EC25-EC35 (EH_1D_AR)	212	50	<10	<10	<10	<10	<10		<10	mg/kg	TM5/PM8/PM16
MTBE#	<5 ^{SV}	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM36/PM12
Benzene [#]	<5 ^{SV}	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM36/PM12
Toluene [#]	<5 ^{SV}	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM36/PM12
Ethylbenzene [#]	<5 ^{SV}	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM36/PM12
m/p-Xylene [#]	<5 ^{SV}	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM36/PM12
o-Xylene [#]	<5 SV	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM36/PM12
PCB 28 [#]	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 28 PCB 52 [#]	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 101 [#]	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 118 [#]	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 138 [#]	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 153 [#]	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 180 [#]	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
Total 7 PCBs [#]	<35	<35	<35	<35	<35	<35	<35		<35	ug/kg	TM17/PM8

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ground Investigations Ireland 9754-07-20 BusConnects Route 12 John Duggan 20/15139

Report : Solid

EMT Job No:	20/15139								_		
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21				
Sample ID	R12-CP02	R12-CP02	R12-CP02	R12-CP02	R12-CP03	R12-CP03	R12-CP03				
Depth	0.50	1.50	2.50	3.50	0.50	1.50	2.50		Please see	otes for all	
COC No / misc									abbrevia	cronyms	
Containers	VJT		l								
Sample Date	27/10/2020	27/10/2020	27/10/2020	27/10/2020	28/10/2020	28/10/2020	28/10/2020		1		
Sample Type	Soil										
Batch Number	1	1	1	1	1	1	1				Method
Date of Receipt	02/11/2020	02/11/2020	02/11/2020	02/11/2020	02/11/2020	02/11/2020	02/11/2020		LOD/LOR	Units	No.
Natural Moisture Content	21.7	11.7	9.5	13.0	12.2	10.8	11.9		<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	17.9	10.4	8.7	11.5	10.9	9.8	10.6		<0.1	%	PM4/PM0
Hexavalent Chromium [#] Chromium III	<0.3 43.5	<0.3 76.0	<0.3 52.5	<0.3 45.8	<0.3 44.0	<0.3 44.3	<0.3 45.7		<0.3 <0.5	mg/kg mg/kg	TM38/PM20 NONE/NONE
	+3.3	10.0	32.3	+0.0	44.0	44.3	40.7		<0.5	шулу	NUNE/INUNE
Total Cyanide [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	mg/kg	TM89/PM45
Total Organic Carbon #	1.39	0.63	0.21	0.20	0.33	0.44	0.34		<0.02	%	TM21/PM24
Loss on Ignition [#]	3.6	1.7	1.8	1.6	1.7	2.3	1.7		<1.0	%	TM22/PM0
рН#	8.35	8.73	8.79	8.75	8.76	8.75	8.81		<0.01	pH units	TM73/PM11
Mass of raw test portion	0.1091	0.1037	0.0981	0.1041	0.1051	0.1005	0.0995			kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09			kg	NONE/PM17

Ground Investigations Ireland 9754-07-20 BusConnects Route 12 John Duggan 20/15139

Report : CEN 10:1 1 Batch

EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21				
Sample ID	R12-CP02	R12-CP02	R12-CP02	R12-CP02	R12-CP03	R12-CP03	R12-CP03				
Depth	0.50	1.50	2.50	3.50	0.50	1.50	2.50		Please se	e attached n	otes for all
COC No / misc									abbrevia	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date	27/10/2020	27/10/2020	27/10/2020	27/10/2020	28/10/2020	28/10/2020	28/10/2020				
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	1	1	1	1	1	1	1		LOD/LOR	Units	Method No.
Date of Receipt		02/11/2020	02/11/2020	02/11/2020	02/11/2020	02/11/2020	02/11/2020				
Dissolved Antimony#	0.004	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10)#	0.04 <0.0025	<0.02 0.0085	<0.02 0.0046	<0.02 <0.0025	<0.02 0.0055	<0.02 <0.0025	<0.02 <0.0025		<0.02 <0.0025	mg/kg mg/l	TM30/PM17 TM30/PM17
Dissolved Arsenic [#] Dissolved Arsenic (A10) [#]	<0.025	0.085	0.046	<0.025	0.055	<0.025	<0.025		<0.025	mg/kg	TM30/PM17
Dissolved Barium [#]	0.011	0.005	0.007	0.005	< 0.003	<0.003	<0.003		 <0.003	mg/l	TM30/PM17
Dissolved Barium (A10) [#]	0.11	0.05	0.07	0.05	<0.03	<0.03	<0.03		<0.03	mg/kg	TM30/PM17
Dissolved Cadmium [#]	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10)#	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	mg/kg	TM30/PM17
Dissolved Chromium#	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015		<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10)#	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015		<0.015	mg/kg	TM30/PM17
Dissolved Copper [#]	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007		<0.007	mg/l	TM30/PM17
Dissolved Copper (A10) #	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07		<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	mg/l	TM30/PM17
Dissolved Lead (A10) #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum#	0.005	0.008	0.005	0.008	0.006	0.005	0.009		<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10) #	0.05	0.08	0.05	0.08	0.06	0.05	0.09		<0.02	mg/kg	TM30/PM17
Dissolved Nickel [#]	<0.002 <0.02	<0.002	<0.002 <0.02	<0.002 <0.02	<0.002	<0.002	<0.002 <0.02		<0.002 <0.02	mg/l	TM30/PM17
Dissolved Nickel (A10)*	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		 <0.02	mg/kg mg/l	TM30/PM17 TM30/PM17
Dissolved Selenium [#] Dissolved Selenium (A10) [#]	<0.03	<0.03	<0.03	<0.03	<0.003	<0.03	< 0.03		<0.03	mg/kg	TM30/PM17
Dissolved Zinc [#]	0.007	0.006	0.008	0.004	0.005	0.003	0.003		 < 0.003	mg/l	TM30/PM17
Dissolved Zinc (A10) [#]	0.07	0.06	0.08	0.04	0.05	<0.03	<0.03		<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF #	0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001		<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		<0.0001	mg/kg	TM61/PM0
Total Phenols HPLC	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	mg/l	TM26/PM0
Total Phenols HPLC	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	mg/kg	TM26/PM0
Fluoride	<0.3	<0.3	<0.3	0.3	<0.3	<0.3	<0.3	 	<0.3	mg/l	TM173/PM0
Fluoride	<3	<3	<3	3	<3	<3	<3		<3	mg/kg	TM173/PM0
Sulphate as SO4 [#]	0.7	2.3	1.7	1.4	<0.5	<0.5	1.3		<0.5	mg/l	TM38/PM0
Sulphate as SO4 [#]	7	23	17	14	<5	<5	13		<5	mg/kg	TM38/PM0
Chloride [#]	<0.3	0.4	<0.3	<0.3	<0.3	<0.3	0.6		<0.3	mg/l	TM38/PM0
Chloride [#]	<3	4	<3	<3	<3	<3	6		<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	5	5	7	3	3	4	2		<2	mg/l	TM60/PM0
Dissolved Organic Carbon	50	50	70	30	30	40	<20		<20	mg/kg	TM60/PM0
Total Dissolved Solids#	75	54	46	56	69	52	45		<35	mg/l	TM20/PM0
Total Dissolved Solids [#]	750	540	460	560	690	520	450		<350	mg/kg	TM20/PM0

BS EN-12457-2 Result Report

Mass of sample taken (kg) 0 Mass of dry sample (kg) = 0 Particle Size <4mm = >

0.1091 0.09 Dry Matter Content Ratio (%) = Leachant Volume (I) 82.1 0.88

EMT Job No		20/15139	Land	Landfill Waste Acceptance					
Sample No		3	Criteria Limits						
Client Sample No		R12-CP02							
Depth/Other		0.50							
Sample Date		27/10/2020	Inert	Stable Non-reactive	Hazardous				
Batch No		1		Non-reactive					
Solid Waste Analysis									
Total Organic Carbon (%)	1.39		3	5	6				
Sum of BTEX (mg/kg)	<0.025		6	-	-				
Sum of 7 PCBs (mg/kg)	< 0.035		1	-	-				
Mineral Oil (mg/kg)	<30		500	-	-				
PAH Sum of 6 (mg/kg)	-		-	-	-				
PAH Sum of 17 (mg/kg)	61.33		100	-	-				
	10:1		Limit	values for c	ompliance				
Eluate Analysis	concn leached		le	eaching test	using				
Eluale Allalysis	A10		BS EN	12457-2 at	L/S 10 l/kg				
				ma/ka					
Arsenic	mg/kg <0.025		0.5	mg/kg	25				
Barium	0.11		20	100	300				
Cadmium	<0.005		0.04	100	5				
Cadmum	<0.005		0.04	10	5 70				
	<0.015		0.5	50	100				
Copper	<0.001		0.01	0.2	2				
Mercury Molybdenum	0.05		0.01	10	30				
Nickel	<0.03		0.3	10	40				
Lead	<0.02		0.4	10	50				
Antimony	0.04		0.06	0.7	5				
Selenium	<0.04		0.00	0.7	7				
Zinc	0.07		4	50	200				
Chloride	<3		800	15000	25000				
Fluoride	<3		10	15000	500				
Sulphate as SO4	7		1000	20000	50000				
Total Dissolved Solids	750		4000	60000	100000				
	-		1		-				
Phenol	-		1	-	-				

BS EN-12457-2 Result Report

Mass of sample taken (kg)	0.
Mass of dry sample (kg) =	0.
Particle Size <4mm =	>

0.1037 0.09 Dry Matter Content Ratio (%) = Leachant Volume (I) 87.0 0.887

Particle Size <4mm =	>95%							
EMT Job No		20/15139	Landfill Waste Acceptance					
Sample No		6	Criteria Limits					
Client Sample No		R12-CP02						
Depth/Other		1.50						
Sample Date		27/10/2020	Inert	Stable Non-reactive	Hazardous			
Batch No		1	1	Non-reactive				
Solid Waste Analysis			1					
Total Organic Carbon (%)	0.63		3	5	6			
Sum of BTEX (mg/kg)	<0.025		6	-	-			
Sum of 7 PCBs (mg/kg)	< 0.035		1	-	-			
Mineral Oil (mg/kg)	<30		500	-	-			
PAH Sum of 6 (mg/kg)	-		-	-	-			
PAH Sum of 17 (mg/kg)	11.94		100	-	-			
Eluate Analysis	10:1 concn leached A10		Limit values for compliance leaching test using BS EN 12457-2 at L/S 10 l/kg					
	mg/kg			mg/kg				
Arsenic	0.085		0.5	2	25			
Barium	0.05		20	100	300			
Cadmium	< 0.005		0.04	1	5			
Chromium	<0.015		0.5	10	70			
Copper	<0.07		2	50	100			
Mercury	<0.0001		0.01	0.2	2			
Molybdenum	0.08		0.5	10	30			
Nickel	<0.02		0.4	10	40			
Lead	<0.05		0.5	10	50			
Antimony	<0.02		0.06	0.7	5			
Selenium	< 0.03		0.1	0.5	7			
Zinc	0.06		4	50	200			
Chloride	4		800	15000	25000			
Fluoride	<3		10	150	500			
Sulphate as SO4	23		1000	20000	50000			
Total Dissolved Solids	540		4000	60000	100000			
Phenol	-		1	-	-			
Dissolved Organic Carbon	50		500	800	1000			

BS EN-12457-2 Result Report

Mass of sample taken (kg)	0.0
Mass of dry sample (kg) =	0.0
Particle Size <4mm =	>9

0.0981 0.09 Dry Matter Content Ratio (%) = Leachant Volume (I) 91.8 0.892

EMT Job No		20/15139	Landfill Waste Acceptance					
Sample No		9	Criteria Limits					
Client Sample No		R12-CP02						
Depth/Other		2.50						
Sample Date		27/10/2020	Inert	Stable Non-reactive	Hazardous			
Batch No		1		Non-reactive				
Solid Waste Analysis			1					
Total Organic Carbon (%)	0.21		3	5	6			
Sum of BTEX (mg/kg)	<0.025		6	-	-			
Sum of 7 PCBs (mg/kg)	< 0.035		1	-	-			
Mineral Oil (mg/kg)	<30		500	-	-			
PAH Sum of 6 (mg/kg)	-		-	-	-			
PAH Sum of 17 (mg/kg)	<0.64		100	-	-			
Eluate Analysis	10:1 concn leached A10		Limit values for compliance leaching test using BS EN 12457-2 at L/S 10 l/kg					
	mg/kg			mg/kg				
Arsenic	0.046		0.5	2	25			
Barium	0.07		20	100	300			
Cadmium	<0.005		0.04	1	5			
Chromium	<0.015		0.5	10	70			
Copper	<0.07		2	50	100			
Mercury	<0.0001		0.01	0.2	2			
Molybdenum	0.05		0.5	10	30			
Nickel	<0.02		0.4	10	40			
				4.0	50			
Lead	<0.05		0.5	10	50			
	<0.05 <0.02		0.5 0.06	10 0.7	5			
Antimony	<0.02		0.06	0.7	5			
Antimony Selenium	<0.02 <0.03		0.06 0.1	0.7 0.5	5 7			
Antimony Selenium Zinc	<0.02 <0.03 0.08		0.06 0.1 4	0.7 0.5 50	5 7 200			
Antimony Selenium Zinc Chloride	<0.02 <0.03 0.08 <3		0.06 0.1 4 800	0.7 0.5 50 15000	5 7 200 25000			
Antimony Selenium Zinc Chloride Fluoride	<0.02 <0.03 0.08 <3 <3		0.06 0.1 4 800 10	0.7 0.5 50 15000 150	5 7 200 25000 500			
Antimony Selenium Zinc Chloride Fluoride Sulphate as SO4	<0.02 <0.03 0.08 <3 <3 17		0.06 0.1 4 800 10 1000	0.7 0.5 50 15000 150 20000	5 7 200 25000 500 50000			

BS EN-12457-2 Result Report

Mass of sample taken (kg) (Mass of dry sample (kg) = (Particle Size <4mm = 2

0.1041 0.09 Dry Matter Content Ratio (%) = Leachant Volume (I) 86.2 0.886

Mass of dry sample (kg) =	0.09	Leachant Volume (I)		0.886				
Particle Size <4mm =	>95%							
EMT Job No		20/15139	Landfill Waste Acceptance					
Sample No		12	Criteria Limits					
Client Sample No		R12-CP02						
Depth/Other		3.50	-					
Sample Date		27/10/2020	Inert	Stable Non-reactive	Hazardous			
Batch No		1		Non-reactive				
Solid Waste Analysis								
Total Organic Carbon (%)	0.20		3	5	6			
Sum of BTEX (mg/kg)	<0.025		6	-	-			
Sum of 7 PCBs (mg/kg)	< 0.035		1	-	-			
Mineral Oil (mg/kg)	<30		500	-	-			
PAH Sum of 6 (mg/kg)	-		-	-	-			
PAH Sum of 17 (mg/kg)	<0.64		100	-	-			
Eluate Analysis	10:1 concn leached A10		Limit values for compliance leaching test using BS EN 12457-2 at L/S 10 I/kg					
A	mg/kg		0.5	mg/kg	05			
Arsenic	< 0.025		0.5	2	25			
Barium	0.05		20	100	300			
Cadmium	< 0.005		0.04	1	5			
Chromium	< 0.015		0.5	10	70			
Copper	< 0.07		2	50	100			
Mercury	<0.0001		0.01	0.2	2			
Molybdenum	0.08		0.5	10	30			
Nickel	<0.02		0.4	10	40			
Lead	< 0.05		0.5	10	50			
Antimony	< 0.02		0.06	0.7	5			
Selenium	< 0.03		0.1	0.5	7			
Zinc	0.04		4	50	200			
Chloride	<3		800	15000	25000			
Fluoride	3		10	150	500			
Sulphate as SO4	14		1000	20000	50000			
Total Dissolved Solids	560		4000	60000	100000			
Phenol	-		1	-	-			
Dissolved Organic Carbon	30		500	800	1000			
BS EN-12457-2 Result Report

Mass of sample taken (kg)	C
Mass of dry sample (kg) =	C
Particle Size <4mm =	>

0.1051 0.09 Dry Matter Content Ratio (%) = Leachant Volume (I) 85.5 0.885

EMT Job No		20/15139	Land	fill Waste Ac	ceptance			
Sample No		15	Criteria Limits					
Client Sample No		R12-CP03						
Depth/Other		0.50						
Sample Date		28/10/2020	Inert	Stable Non-reactive	Hazardous			
Batch No		1		Nonreactive				
Solid Waste Analysis								
Total Organic Carbon (%)	0.33		3	5	6			
Sum of BTEX (mg/kg)	<0.025		6	-	-			
Sum of 7 PCBs (mg/kg)	<0.035		1	-	-			
Mineral Oil (mg/kg)	<30		500	-	-			
PAH Sum of 6 (mg/kg)	-		-	-	-			
PAH Sum of 17 (mg/kg)	<0.64		100	-	-			
	10:1 concn		Limit values for complia leaching test using					
Eluate Analysis	leached			12457-2 at				
	A10							
	mg/kg			mg/kg				
Arsenic	0.055		0.5	2	25			
Barium	<0.03		20	100	300			
Cadmium	<0.005		0.04	1	5			
Chromium	<0.015		0.5	10	70			
Copper	<0.07		2	50	100			
Mercury	<0.0001		0.01	0.2	2			
Molybdenum	0.06		0.5	10	30			
Nickel	<0.02		0.4	10	40			
Lead	<0.05		0.5	10	50			
Antimony	<0.02		0.06	0.7	5			
Selenium	<0.03		0.1	0.5	7			
Zinc	0.05		4	50	200			
Chloride	<3		800	15000	25000			
Fluoride	<3		10	150	500			
Sulphate as SO4	<5		1000	20000	50000			
Total Dissolved Solids	690		4000	60000	100000			
Phenol	-		1	-	-			
Dissolved Organic Carbon	30		500	800	1000			

BS EN-12457-2 Result Report

Mass of sample taken (kg) Mass of dry sample (kg) = Particle Size <4mm =

0.1005 0.09 Dry Matter Content Ratio (%) = Leachant Volume (I) 89.6 0.889

EMT Job No		20/15139	Land	fill Waste Ac	ceptance			
Sample No		18		Criteria Limits				
Client Sample No		R12-CP03						
Depth/Other		1.50						
Sample Date		28/10/2020	Inert	Stable Non-reactive	Hazardous			
Batch No		1		Nonreactive				
Solid Waste Analysis								
Total Organic Carbon (%)	0.44		3	5	6			
Sum of BTEX (mg/kg)	<0.025		6	-	-			
Sum of 7 PCBs (mg/kg)	< 0.035		1	-	-			
Mineral Oil (mg/kg)	<30		500	-	-			
PAH Sum of 6 (mg/kg)	-		-	-	-			
PAH Sum of 17 (mg/kg)	<0.64		100	-	-			
Eluate Analysis	10:1 concn leached A10		le	Limit values for compliance leaching test using BS EN 12457-2 at L/S 10 l/kg				
	mg/kg			mg/kg				
Arsenic	< 0.025							
Danium			0.5	2	25			
Barium	<0.03		0.5 20	2 100	25 300			
Cadmium								
	<0.03		20	100	300			
Cadmium Chromium	<0.03 <0.005		20 0.04	100 1	300 5			
Cadmium Chromium Copper	<0.03 <0.005 <0.015		20 0.04 0.5	100 1 10	300 5 70			
Cadmium Chromium Copper Mercury	<0.03 <0.005 <0.015 <0.07		20 0.04 0.5 2	100 1 10 50	300 5 70 100			
Cadmium Chromium Copper Mercury Molybdenum	<0.03 <0.005 <0.015 <0.07 <0.0001		20 0.04 0.5 2 0.01	100 1 10 50 0.2	300 5 70 100 2			
Cadmium Chromium Copper Mercury Molybdenum	<0.03 <0.005 <0.015 <0.07 <0.0001 0.05		20 0.04 0.5 2 0.01 0.5	100 1 10 50 0.2 10	300 5 70 100 2 30			
Cadmium Chromium Copper Mercury Molybdenum Nickel Lead	<0.03 <0.005 <0.015 <0.07 <0.0001 0.05 <0.02		20 0.04 0.5 2 0.01 0.5 0.4	100 1 10 50 0.2 10 10	300 5 70 100 2 30 40			
Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony	<0.03 <0.005 <0.015 <0.007 <0.0001 0.05 <0.02 <0.05		20 0.04 0.5 2 0.01 0.5 0.4 0.5	100 1 10 50 0.2 10 10 10	300 5 70 100 2 30 40 50			
Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	 <0.03 <0.005 <0.015 <0.07 <0.0001 0.05 <0.02 <0.05 <0.05 <0.02 <0.02 <0.02 		20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06	100 1 10 50 0.2 10 10 10 0.2 10 0.7	300 5 70 100 2 30 40 50 5			
Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc	<0.03 <0.005 <0.015 <0.001 <0.0001 0.05 <0.02 <0.05 <0.02 <0.02 <0.02		20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1	100 1 10 50 0.2 10 10 10 0.2 0.0 0.2 10 10 0.7 0.5	300 5 70 100 2 30 40 50 5 7			
Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride	 <0.03 <0.005 <0.015 <0.07 <0.001 0.05 <0.02 <0.02 <0.02 <0.03 <0.03 		20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4	100 1 10 50 0.2 10 10 10 0.7 0.5 50	300 5 70 100 2 30 40 50 5 7 200			
Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride	 <0.03 <0.005 <0.015 <0.001 0.05 <0.02 <0.02 <0.03 <0.03 <3 		20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800	100 1 10 50 0.2 10 10 10 0.2 50 0.2 10	300 5 70 100 2 30 40 50 5 7 200 25000			
Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride	 <0.03 <0.005 <0.07 <0.001 0.05 <0.02 <0.02 <0.03 <0.03 <3 <3 		20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10	100 1 10 50 0.2 10 10 10 0.7 0.5 50 15000	300 5 70 100 2 30 40 50 5 7 200 25000 500			
Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate as SO4	 <0.03 <0.005 <0.015 <0.007 <0.0001 0.05 <0.02 <0.02 <0.03 <0.03 <3 <3 <5 		20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10 1000	100 1 10 50 0.2 10 150 20000	300 5 70 100 2 30 40 50 5 7 200 25000 500 500			

BS EN-12457-2 Result Report

Mass of sample taken (kg)	0.0
Mass of dry sample (kg) =	0.0
Particle Size <4mm =	>9

0.0995 0.09 Dry Matter Content Ratio (%) = Leachant Volume (I) 90.0 0.89

EMT Job No		20/15139	Land	fill Waste Ac	ceptance			
Sample No		21	Criteria Limits					
Client Sample No		R12-CP03						
Depth/Other		2.50						
Sample Date		28/10/2020	Inert	Stable Non-reactive	Hazardous			
Batch No		1		Nonreactive				
Solid Waste Analysis								
Total Organic Carbon (%)	0.34		3	5	6			
Sum of BTEX (mg/kg)	<0.025		6	-	-			
Sum of 7 PCBs (mg/kg)	<0.035		1	-	-			
Mineral Oil (mg/kg)	<30		500	-	-			
PAH Sum of 6 (mg/kg)	-		-	-	-			
PAH Sum of 17 (mg/kg)	0.71		100	-	-			
Eluate Analysis	10:1 concn leached A10		le le	Limit values for compliance leaching test using BS EN 12457-2 at L/S 10 l/kg				
	mg/kg			mg/kg				
Arsenic	<0.025		0.5	2	25			
Barium	<0.03		20	100	300			
Cadmium	< 0.005		0.04	1	5			
Chromium	<0.015		0.5	10	70			
Copper	<0.07		2	50	100			
Mercury	<0.0001		0.01	0.2	2			
Molybdenum	0.09		0.5	10	30			
Nickel	<0.02		0.4	10	40			
Lead	<0.05		0.5	10	50			
Antimony	<0.02		0.06	0.7	5			
Selenium	<0.03		0.1	0.5	7			
Zinc	<0.03		4	50	200			
Chloride	6		800	15000	25000			
Fluoride	<3		10	150	500			
Sulphate as SO4	13		1000	20000	50000			
Total Dissolved Solids	450		4000	60000	100000			
Phenol	-		1	-	-			
Phenoi	_		I					

Client Name:	Ground Investigations Ireland
Reference:	20/07/9754
Location:	BusConnects Route 12
Contact:	John Duggan

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT				EMT	Date Of		
Job No.	Batch	Sample ID	Depth	Sample No.	Analysis	Analysis	Result
20/15139	1	R12-CP02	0.50	2	12/11/2020	General Description (Bulk Analysis)	Soil/Stone
					12/11/2020	Asbestos Fibres	NAD
					12/11/2020	Asbestos ACM	NAD
					12/11/2020	Asbestos Type	NAD
					12/11/2020	Asbestos Level Screen	NAD
20/15139	1	R12-CP02	1.50	5	12/11/2020	General Description (Bulk Analysis)	Soil/Stone
					12/11/2020	Asbestos Fibres	NAD
					12/11/2020	Asbestos ACM	NAD
					12/11/2020	Asbestos Type	NAD
					12/11/2020	Asbestos Level Screen	NAD
20/15139	1	R12-CP02	2.50	8	12/11/2020	General Description (Bulk Analysis)	Soil/Stone
					12/11/2020	Asbestos Fibres	NAD
					12/11/2020	Asbestos ACM	NAD
					12/11/2020	Asbestos Type	NAD
					12/11/2020	Asbestos Level Screen	NAD
20/15139	1	R12-CP02	3.50	11	12/11/2020	General Description (Bulk Analysis)	Soil/Stone
					12/11/2020	Asbestos Fibres	NAD
					12/11/2020	Asbestos ACM	NAD
					12/11/2020	Asbestos Type	NAD
					12/11/2020	Asbestos Level Screen	NAD
20/15139	1	R12-CP03	0.50	14	12/11/2020	General Description (Bulk Analysis)	soil.stones
					12/11/2020	Asbestos Fibres	NAD
					12/11/2020	Asbestos ACM	NAD
					12/11/2020	Asbestos Type	NAD
					12/11/2020	Asbestos Level Screen	NAD
20/15139	1	R12-CP03	1.50	17	12/11/2020	General Description (Bulk Analysis)	soil.stones
					12/11/2020	Asbestos Fibres	NAD
					12/11/2020	Asbestos ACM	NAD
					12/11/2020	Asbestos Type	NAD
					12/11/2020	Asbestos Level Screen	NAD
20/15139	1	R12-CP03	2.50	20	12/11/2020	General Description (Bulk Analysis)	soil.stones
2 5 100					12/11/2020	Asbestos Fibres	NAD
					12/11/2020	Asbestos ACM	NAD
					.2,11/2020		

Client N Referen Locatio Contact	nce: n:		Ground I 20/07/97 BusConr John Dug	'54 nects Rou	ions Ireland te 12		
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/15139	1	R12-CP03	2.50	20	12/11/2020	Asbestos Type	NAD
					12/11/2020	Asbestos Level Screen	NAD

Client Name:Ground Investigations IrelandReference:9754-07-20Location:BusConnects Route 12Contact:John Duggan

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason				
	No deviating sample report results for job 20/15139									

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/15139

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

# ISO17025 (UKAS Ref No. 4225) accredited - UK. SA ISO17025 (SANAS Ref No. T0729) accredited - South Africa B Indicates analyte found in associated method blank. DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Detected (usually refers to VOC and/SVOC TICs). NDP No Detected (usually refers to VOC and/SVOC TICs). NDP No Detected (usually refers to VOC and/SVOC TICs). NDP No Detected (usually refers to VOC and/SVOC TICs). SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. * Analysis subcontracted to an Element Matorials Technology approved laboratory. AD		
B Indicates analyte found in associated method blank. DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher; this result is not accredited. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher; this result is not accredited. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher; this result is not accredited. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher; this result is not accredited. >> Results above calibration range,	#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Elemination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + ACC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. ^4 Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. · Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LODLOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample N Client Sample	В	Indicates analyte found in associated method blank.
NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. · Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Tip Blank Sample	DR	Dilution required.
NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. > Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. · Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	М	MCERTS accredited.
ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. • Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	NA	Not applicable
NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	NAD	No Asbestos Detected.
SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	ND	None Detected (usually refers to VOC and/SVOC TICs).
SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	NDP	No Determination Possible
W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	SS	Calibrated against a single substance
+ AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
>> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample TB Trip Blank Sample	W	Results expressed on as received basis.
>> higher, this result is not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	>>	
CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	*	Analysis subcontracted to an Element Materials Technology approved laboratory.
LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	AD	Samples are dried at 35°C ±5°C
ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	со	Suspected carry over
NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	ME	Matrix Effect
LB Blank Sample N Client Sample TB Trip Blank Sample	NFD	No Fibres Detected
N Client Sample TB Trip Blank Sample	BS	AQC Sample
TB Trip Blank Sample	LB	Blank Sample
	N	Client Sample
OC Outside Calibration Range	ТВ	Trip Blank Sample
	ос	Outside Calibration Range

EMT Job No: 20/15139

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C-440C)	PM0	No preparation is required.	Yes		AD	Yes

EMT Job No: 20/15139

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes

EMT Job No: 20/15139

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM65	Asbestos Bulk Identification method based on HSG 248 First edition (2006)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
ТМ73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.	Yes		AR	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

APPENDIX 4 – Groundwater Monitoring

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

 Tel:
 01 601 5175 / 5176

 Email:
 info@gii.ie

 Web:
 www.gii.ie

GROUNDWATER MONITORING

Bus Connects Stage 1 Lot 1 - Route 12

BOREHOLE	DATE	TIME	GROUNDWATER (m BGL)	Comments
R12-CP02	31/03/2021	16:50	2.13	
R12-CP03	31/03/2021	17:00	3.15	